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The axial anomaly in the light-cone gauge 

D M Capper and M J Litvakt 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 20 August 1984 

Abstract. We evaluate the axial anomaly using the light-cone gauge and light-cone coordin- 
ates. In  addition to the generally accepted result we find extra non-Lorentz-covariant 
contributions. 

1. introduction 

The problem of the axial anomaly has its origins with a paper by Steinberger in 1949. 
Since then our understanding of the phenomenon has been much improved (Schwinger 
1951, Adler 1969, 1970, Bell and Jackiw 1969, Bardeen 1969, Adler and Bardeen 1969) 
and, in particular, recent interest has concerned the question as to whether the 
Adler-Bardeen theorem ( 1969) holds in supersymmetric theories (Jones and Leveille 
1982a, b, Grisaru and West 1983, Breitenlohner et a1 1984). Another, different, area 
of current interest is the formulation of supersymmetric field theories and string theories 
in the light-cone gauge (Mandelstam 1983, Green and Schwartz 1981, Alvarez-Gaume 
and Witte,n 1983). In the case of supersymmetric field theories the light-cone gauge 
is central to Mandelstam's proof of the finiteness of the N = 4 supersymmetric Yang- 
Mills theory (Capper et a1 1984) as well as the off-shell formulation of N = 8 super- 
gravity. In view of the importance of the light-cone gauge it is desirable to investigate 
the validity of the formulation in a more familiar context; in this paper we calculate 
the anomaly for quantum electrodynamics. 

In order to handle the divergent integrals that occur in any quantum field theory 
we need to introduce a regularisation scheme. Here we employ dimensional regularisa- 
tion ('t Hooft and Veltman 1972, Ashmore 1972, Bollini and Giambiagi 1972, Leibbrandt 
1975) since it respects most symmetries and, perhaps more significantly, enables us to 
evaluate what would otherwise be very difficult integrals. As is well known (Akyeam- 
pong and Delbourgo 1973, 1974, Breitenlohner and Maison 1977, Bonneau 1981), 
however, there exists a substantial problem in applying dimensional regularisation to 
theories which involve the ys matrix. The two assumptions of cyclicity of the trace 
and a totally anticommuting y5 enable one to show in an n-dimensional space that 

(1.1) 
This result demonstrates that there is no analytic continuation of ys with the above 
properties. Moreover, it is precisely this inconsistency between analyticity, an anti- 
commuting ys and cyclicity of the trace which gives rise to the axial anomaly; otherwise 
it would be possible to show that the anomaly vanishes (Adler 1970). There have been 

t Present address: Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Rel-Aviv, Israel. 

( n  -4) Tr YsYaYpYp?bYm = 0. 
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various attempts to define the y5 matrix in the context of dimensional regularisation 
(Akyeampong and Delbourgo 1973, 1974, Breitenlohner and Maison 1977, Bonneau 
1981). However, as shown in Jones and Leveille (1982a, b) and Capper (1979), one 
can get consistent results for the axial anomaly without assuming any properties of 
the y5. One simply avoids moving the ys matrix through any of the other y-matrices 
until after the integrals have been evaluated. It can then be seen that the anomaly is 
finite and once this stage has been reached an ordinary four-dimensional y5 can be 
employed. The generally accepted result for the anomaly then follows. In this paper 
we make use of the same approach but in the context of the light-cone gauge. 

2. The axial anomaly in the light-cone gauge 

We start from the usual Lagrangian for quantum electrodynamics?: 

B= -$(a,A,-a,A,)2-J/y,(a, -ieA,)+. (2.1) 

Light-cone coordinates are introduced by defining, for an arbitrary vector X , ,  

x*=(1/&x0*x3). 

+* =iY*YT+ 

Spinors +* are defined by 

where 

Y* = ( 1 / 4 ( Y O *  Y 3 ) .  (2.4) 

A+ = 0. (2.5) 

The light-cone gauge consists of imposing the condition 

If we now choose X +  to be our 'time' coordinate then A- and +- can be eliminated 
via the equations of motion$ 

1 i eJ2  
a+ a A- = - (a 'Ai + ( + T ++ ) ) , 

We can thus express the Lagrangian as 

1 a2 1 ie j 
h a  a+ f i  +a+ 

B = tAia2Ai +-+:,J/+ - i e h  $Ai-( +?$I+) +-+*-(A++) 

ie e2 A 1 e' 1 
JI a+ f i  a+ a+ + - +T - ++ - - +w- (A++) + a+ (+T ++) - (*T ++) 

which gives rise to the Feynman rules shown in table 1. 

t We use a ( +  - - - )  metric. 
$ In order to avoid confusion we denote the Hermitian conjugate of JI, by JI?. We denote the fi  = I ,  2 
components of a vector X' by X' and when using dimensional regularisation continue t!e f components 
to (20 -2) dimensions. Scalar products of these restricted vectors are distinguished via X. Y =  Z ,  X'Y'. 
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Table 1. Feynman rules relevant to our calculation which arise from (2.8). 

Diagrammatic representation Momentum space description 

q- 

9: U: 

A’ * iJ2 q+ 

q2 
-- 

The chiral invariance of the original Lagrangian (equation (2.1)) leads US to 
introduce the axial current 

Jr = J Y P Y 5 @  (2.9) 

(0 IddPA%,fA’(P2) 10). (2.10) 

and our objective is to evaluate 

One approach is to calculate the diagrams shown in figure 1 using the method of 
Capper (1979). There, using the vertex derived from d,Jr and assuming no properties 
of the ys matrix until after the integrals had been evaluated, a finite result was obtained. 
It turned out to be very hard to carry out this program in the light-cone gauge, mainly 
due to the difficulty in performing the integrations. In fact we were able to carry this 
calculation through to completion only by assuming an anticommuting y5 matrix; even 
then the evaluation of the integrals involved hypergeometric functions. This technique 
was unsuccessful since the result for the anomaly turned out to be zero! 

We now revert to the alternative approach given in Jones and Leveille (1982a, b) 
which in the covariant formulation consists of first defining 

PI, P 2 )  = (0 I G A ’ (  PI )A”(  Pz) IO). (2.1 1) 

(2.12) 

On the basis of symmetry and Lorentz covariance we can also write 

(0 J ~ d W ( P I ) A ” ( P 2 )  10) = A8p”PuPlpPz, 

where the coefficient A is the anomaly we wish to calculate. R“,“ and A are related by 

(2.13) i(Pl + P 2 ) u ~ u F Y ( P I ,  P2) = A~’uPuP10P2, 
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Figure 1. Fermion loop contributions to (OlJ&A‘( p,)A’(p,)lO). The upper vertex results 
from the JJY insertion. 

and the technique used in Jones and Leveille (1982a, b) is to differentiate with respect 
to p :  and then put 

PI “ P  = -p2 (2.14) 

thus obtaining 

iR”@”( p,  - p )  = A8FuFpp.  (2.15) 

To find A we only need to consider R U p Y (  p, - p )  which is far easier than Rup”( pI ,  p 2 ) .  
This approach can be applied to the light-cone coordinate calculation and we begin 

by rewriting (2.13) as 

i(p; + p J R + ” ( p , ,  p2) +i(p: + p 9 R - ’ ( p 1 ,  p2 )  -i(p;” +p2”)Rm”(pI, p 2 )  
= A[ 8 ” + - p ; p :  + $”-+p:p;] .  (2.16) 

The major difference, however, is that when we differentiate (2.16) with respect to p ;  
it is possible to obtain terms of the form ( p : + p : ) - ’  from the R-‘ factors. Taking 
this into account and eliminating those contributions that are clearly zero we obtain 

d q - +  + i ( p ~ + p ~ ) - [ R - q ( p t 7  p 2 ) ] p , = - p , = p + i R + q ( p ,  - p )  = A 8  p , (2.17) 
dp; 

(2.19) 

In order to evaluate the left-hand side of equations (2.17)-(2.19) we need the additional 
Feynman rules resulting from the J i  insertion; these are given in table 2. The diagrams 
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Table 2. Feynman rules (relevant to our calculation) resulting from a /$’ insertion. 

Diagrammatic representation Momentum space description 

_ -  ( ( j - j 2 )  Y k Y 5 Y + Y - + Y k Y s Y - Y + -  ) 
2 f i  ( 9 + - P : )  (4 +P,) 

J: 

to be evaluated are the same as in figure 1 except that the upper vertex comes from a 
J:  rather than 8.J: insertion. A considerable number of integrals are required and 
in order to facilitate the task of checking our results some of these are given in the 
appendix. The algebraic manipulation program SCHOONSCHIP (Strubbe 1974) was 
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used to aid the calculation and on evaluating the left-hand sides of (2.17)-(2.19) we 
obtained: 
(+) term: 

(-) term: 

-(e2/27r2)8'lp+; (2.20) 

(k) term: 
(e2/27r2)( gik$ - 8Jkp') .  

(2.21) 

(2.22) 

3. Discussion 

From (2.20)-(2.22) we can see that the (+) term is consistent with the accepted covariant 
expression for the anomaly but this is not true of either the (-) or the (k) contributions. 
In fact the (-) term would imply an additional non-local anomaly of the form 

Evidently in this calculation the breaking of Lorentz covariance is highly non-trivial 
and the anomaly is not of the form assumed in (2.16). This result may be the outcome 
of choosing a particular regularisation technique which appears to have moved the 
anomaly from the axial current to the vector current. The peculiar phenomenon of 
non-locality might be similar in origin to that occurring in another light-cone calcula- 
tion, namely the non-local infrared divergent term in the expression for the one-loop 
gluon self-energy (Capper et a1 1984). 

In both of these calculations the principal value prescription was used in order to 
handle the singular integrals occurring in the light-cone gauge. However, use of the 
Mandelstam prescription removed the non-local divergent terms in the gluon self- 
energy. We suspect that use of this prescription in the anomaly calculation would lead 
to the generally accepted result. Such a calculation would be very difficult to carry 
out in practice. 
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Appendix 

In this appendix we list some of the more basic integrals used in our calculation. They 
were obtained by employing the principal value prescription (Capper et al 1984). 



Axial anomaly in the light-cone gauge 96 1 

2 ( 2  - w ) ( 2  w - 3 ) ( 2  o - 5 )  W, d2"q - I 4 2 c ( q + P ) 2 1 2 [ ( 4 + P ) n 1 2 -  ( w  - 3 H w  - 4 ) ( p n I 2  

I q2[(  4 + P)212(  4 + P) n 

I 4 2 [ ( 4 + p ) 2 1 2 4 n  Pn 

, 

2( 2w - 3 )  ( 2  - w ) W, - - d2"q 
- 3 ) p n  

9 

2(2w - 3 )  w, - - d2"q 
1 

where 

- i ( - i ~ ) " r ( 2 - ~ ) ~ ( ~  - i)rIw - i)(p2)"-' 
~ ( 2 ~  - 2 )  

wi = 

All other integrals are derived from the above results by differentiation with respect 
to pi. 
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